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Abstract

Jo !0
The first order determination of the properties of a
plasma immersed in a constant, external, magnetic field is
carried out. Normal mode analysi‘s is utilized in an initial
value problem based on plane symmetry. Methods for determining
expansion coefficients for the transverse and longitudinal modes,

separately, are deduced. Avt#oe

-i-




I. INTRODUCTION

1.1 Earivy Description J

The history of plasma physics can be traced
back to Lengmuir s gas discharge experiments of the late
1920 s. He discovered that some electrons in the
discharge had energies l=2rger than the potential
difference across the %tube. The explanaﬁion for the
above and associated phencmena appeared in a theoretical
paper by Tonks and Langmuir in that same year [Tonks
and Languir, 1929] - They postulated that the discharge
not only ionized the gas in the tube but that it also
caused some spatial rearrangement of the generated
electron concentration thus creating strong local
electric fields. This would explain the energy source

‘of the higﬁ velocity electrons observed. They then
carried their analysis one step further by predicting
that the system's attempt to regain over-all neutrality
would result in electron or plasma oscillations, which
in the absence of collisions and of thermal motion (a
zero temperature or cold plasma model was chosen) would
execute their periodic motion at the derived character-
istic frequency, szwp9 ad infinitum. In terms of

more basic parameters, wp was shown to be given by

(1.1) W g‘\/ﬁEEQEE

m
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where wp is the plasma frequency and I,» €, m are the
electronic concentration, charge, and mass, respectively.

One ad hoc postulate was added to their theory.
They supposed that the transverse oscillations could
also exist and that these would account for the
radiation observed to linger after the main discharge
had subsided. Spectroscopic analysis has indicated,
however, that this radiation is due to Bremsstrahlung
and to the quantized radiative processes that occur in
the ion-electron recombination [Griem, 1961] o

The parameter wp is of primary importance in all
problems dealing with the interaction of electromag-
netric radiation with ionized media. It ma8y be shown

[Jackson9 1962J that the medium's index of refraction,

n, is given by

-~/ 2
w
(102) n = l = —%

w

where w is the frequency of the propagating electro-
magnetic wave.

The above relation implies that transmission
obtains when w:>wp and that attenuation and reflection
result when w<:’,wpo The importance of Tonks and
Langmuir's dynamical approach to this characteristic
frequency lies on the fact it sheds some light on the

mechanical nature of this periodic process.




l.2 Non-Equilibrium Statistical Mechanics

Two decades later, Vlasov [Vlasov9 1945] proposed
that the problems of ionized gas physics could be more
adequately treated by the methods and concepts of
classical statistical mechanics. He showed that the
Liouville equation leads to the familiar transport

equation

OR(T,u,t) |, 3.5 g F =&
(1.3) t 07 rwypF +ayg,F =(6t

coll.
| where F(faﬁ9t) is the probability of finding an electron

3

in dr’ centered at T, and in du’ centered at u at time,
| t: a is a smooth acceleration suffered by an electron
due to a smeared out potential created by the presence
of many other charged particles in its vicinitygs

!
%g is a violent redistribution of the electron's
% coll.

point in six dimensional configuration-velocity space
brought about by a close binary collision either

between an electron and an ion or an electron with a

second electron.

Vlasov then proposed that the solution of the
above equation coupled to that of the associated four
Maxwell relations would constitute a complete descrip-
tion of the plasma state. It is from this point that
much of the subsequent work in the quantitative de-
scription of plasma phenomena proceeds. In this work,

however,. we shall not concern ourselves with the




validity of this singlet density transport equation but
rather assume the latter and demonstrate its solution.
It is important to note here that the system is
composed only of electrons, positive ions under various
degrees of ionization, and of neutral gas atoms and / or
molecules. Although all the particles of the system
obey a transport equation, we shall assume that the
distribution function for all particles except electrons
is constant. We may readily Jjustify this simplifica-
tion by remembering that all other particles are at
least 18%6 times more massive than the electron. It
is for this reason that we may speak of a uniform ion
background which is such that the system is in an over-

all neutral state.

1,3 Microscopic _and Macroscopic Descriptions

There exist two major approaches to the solution
of the above mentioned set of five coupled partial
differential equations. The first consists in the
linearization of the tramnsport or Boltzmann equation
and the subsequent solution of the set of equations via
transform techniques, partial differential equations
(Ansatz solution), or the method of normal modes. This
approach yields the value of all Maxwell field quanti-

ties and permits us to see how the plasma's distribution




-5

function, F, varies as a function of T, u, and t.

This first method is usually referred to as the mirco-
scopic description. The second approach consists in
multiplying the linearized transport equation by 1,

mu and g%-u , respectively, and integrating the results

over all velocity components. This yields the contin-
uity, momentum transfer, and energy transfer equations,
respectively, and together with the four Maxwell
relations constitute the so-called macroscopic descrip-
tion of plasma parameters. This latter approach is
usually called magneto-=hydrodynamics. In the following
work, we shall be concerned only with the former of

these two methods.

1.4 Purpose

In this work, we shall show that the normal mode
approach to the solution of the transport equation
which was first clearly expounded by K. M. Case [Case9
1959] and later extended by Shure [Shure9 1962] can
after some modification of the latter's work be
applied to the solution of the initial value problem
for the case of a temperature dependent plasma immersed
in a constant, outside applied magnetic field.
Furthermore, the relationship between the two approaches

will be demonstrated and a particular initial wvalue
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problem will be considered in some detail.

In order to enable ourselves to compare results
with those of Landau and to outline the deficiencies
in other approaches, we have felt it useful to include
a brief description of these other techniques. These
will include the transform, Ansatz and stationary

phase approaches.

1.5 Transform Techniques

The first successful attempt at the solution of
the transport equation for the case of a temperature
dependent gas is attributed to L. D. Landm.l[Landau,1946]°
He showed that the linearized Boltzmann equation for
the case of no collisions and where the only force
term was due to the strong local electric fields
could, in principle, be solved by transform methods.

His linearized equation was

[«

(18)  HEDE) L GF £ - EF 0 T (mF,) = O

where he assumed that

(1.5) F(r,u,t) = nF () + f(r,u,t)
(rs»n )
(1.6) nF > £f(r,u,t)

(1.7) ooy, o(T:t) = -4me fw £(T,0,t) du’.,




A Fourier transform of the space variable and a Laplace

transform of the time lead to the transform equations

1 _ o aFo(lﬁl)
(1.8) fp,k = p+ikuz gk(u)'*ikﬁno(pp,k auz

and
) gk(uz) duz
Zp+ikuz5
41te 00
(1.9) o
p.k 2 oo
? k l¢_4nie2 dFo du-
| km o du (p-+ikuz§
; =00
where

(1.10) gk(uz) = fk(uzgo)o

Taking the inverse transforms of these functions then
completes the solution and yields f(z,u,t) and ¢(z,t)
: for any time, t > O.

Landau's major contribution came as a result of
an investigation of the poles in the expression for

¢ Jk° The solution to the equation

p
* arF du
4rie o] Z _
(1.11) l<=—T——— n, duz (SIIT—ES = 0

-00
leads to the dispersion relation which bears his names

S S

~2(kA)°2
(1.12) w=w 1+§k21%-i}/§ —-1———3 e D
(le)




where

(1.13) lDa -—§L§
4mnoe

s Debye length,

k;lD<K1; this is the approximation condition used to
derive the dispersion relation. The Debye length is the
effective range of interaction between two charged
particles. All charged particles at a distance greater
than IKD from a particular electron form a neutral
background and therefore don't exert forces on it.
Finally, we see that, in the limit of a cold plasma,
Landau's results reduce to those predicted by Tonks

and Langmuir, namely,

W W .
b

1.6 Ansatz_Solutions

Although a strictly chronological development of
the subject would dictate that we consider the Bohm and
Gross contribution at this point, [Bohm and Gross, 1949],
a far greater insight into the mathematical intricacies
and their possible pit-falls can be obtained by next
outlining the main results of a paper written by Berz

[Berz, 1956J . He was able to show that the " Ansatz' *

lThere seems to exist some confusion in terminology
here. The German equivg}ent to substitution is Ersatz
whereas Ansatz means a ' start''.
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or substitution method first employed by Vlasov and
later by Bohm and Gross leads to particular solutions
of the transport equation and to an incorrect dispersion
relation. The ''Ansatz' method consists in the a priori
assumption that all quantities having r and t as
arguments vary as exp i(ke.T -wt).

Berz assumed variations of the distribution
function in one direction only and linearized the

transport equation as did Landau, i.e.

o(n F )
0f(z,u_,t of e N, ot o
(1.14) —3( 14z )-+u25;~+ﬁE(z9t) EE;—_— =0

where

(1.15) %§<th> = 4Te [ £(z,u,,t) du,.

a0

Assuming that

(1.16) E(z,t) = E, ei(kz"Wt)
but,

ikz

[0}

(1.17) f(z9uz9t) = fk(uzgt)

and inserting into the above gives

of, (u_,t) en E dF
k‘'"z? . 0 0 _=iwt o _
(1.18) 3T + 1kusz + e EE; 0

and
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. -iwt _ =
(1.19) ikE e = 4Te jrw fk(uzgt) du, .

The solution of the transformed Boltzmann equation can

be obtained by ordinary means and is

dFo -iwt

T €

e duz —ikuzt
(1.20) fk(uz,t) = iﬁ nOEO mz—:wT- + C(uz)e

where C(uz) is the integration constant of the equation.

Its specific form as a function of velocity can be ob-

tained only by imposing the initial conditionms.
Inserting the above result into equation (1.19)

gives us the dispersion relation:

%o o0
dF
-iku t
oy | X 2 du, du, , <k iwt ) C(ude af,.
’ v, (w,—w/k) * En_

Berz then argued on physical grounds that the
dispersion relation should be independent of time.
Consequently, only those velocity functions, C(uz),
may be chosen which do not invalidate this assumption.

Such a function is

EC
(1.22) C(u,) = ; 9 .
(% - uz)

Integrating in the complex plane yields




dFo
2 du du kC_
(1.25) ( .l(_) - —2% 2 + i ]
w w n
p -3 o

-0
where the sign of the second terms depends on the path
of integration and the imaginary part of w/k is
assumed to be zero. The wvalue of Co may be obtained
by considering f(z,u,t) at t =0. We have

' ieE e -iku,t
(1.24) f(z,uz,t) m) ( -kCoe

At t =0, this becomes

Z

1eE e1¥2 aF,
(1025) f(z,u O) = m no EIT - kCO:' .
Z

Assuming that f(z,°w/k,0) #0, Berz arrived at the

conclusion that

n dFo(w/k)

=2 2L
(1.26) o, = g 2

which implies that

R dFo
(1.27) ( X )2 duz' . aF (w/k)
o — = D— u + °
wp (uz_ %) Z du

<o
The work of Bohm and Gross would lead us to conclude

that




~ Y2 -
)
dF
| T
(1.28) ( ;— 7 ) duz

—0

where the initial conditions are neglected. There

exist no physical reasons Justifying the assumption

dFo(w/k)
that F= be zero. It is, however, a direct

result of applying the substitution method to the
problem.

Finally, we may criticize Berz on his choice of
the function, C(uz). Any'fﬁhction eliminating time from
the dispersion relation would be validg another valid

choice would be

EC

1 (u) !
(1.29) C(u,) = e (w) :k_uz

or
(1.30) C(u,) = EC  G(u,) 6(u, -w/k)

where G(uz) is any function of u,.

Indeed, the number of valid choices is limitless
and each new choice gives rise to a new dispersion
relation.

As we can see from the above, the Ansatz method
and Berz's approach leave much to be desired in the

solution of the transport equation.
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1.7 Stationary Phase

Van Kampen [van Kampen, 1955] proposed that the
difficulty in dealing with a pole at w=ku has nothing
to do with the physics of the problem but rather is
due to the inability of the mathematical procedures
used to treat the case of a continuous velocity
distribution. His paper offered a mathematical
technique that permits the use of the so called
stationary wave approach in the case of a continuous
non vanishing velocity distribution, noFo(u)° Van
Kampen linearized the trénsport equation in the usual

fashion and obtained for the collisionless case
(1.31) 3f£(T,u,t)
where

(1.32) E(T,t) = 4me ﬂ:(i‘,ﬁ,t) du’.
Letting

(1.33) £(F,5,t) = g@elET =¥

and inserting into the linearized equation gives
2 —
T V(DY L8R =4tk = 3 .
(1.34) (-w+k-u)g(u) + == quo( —-k2 )[g(u) du 0.

Van Kampen further simplified his equations by assuming

thats
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(a) k is in the z direction
(b) the equilibrium velocity distribution is isotropic

i.eo.

(1.35) F () = F(lul)

or
— 3 aFo
(1056) qu = {i' a'u""' .
This meant that
2 2F _
(l°57) (-w+kuz>g(u) _LFNnOe auo [8(11) (111.5 = Oo
m v

He then defined

(1.38) g(u,) [[g(ﬁ) du, dug

which implied that

2 2
8n n e

(1.39) (w-ku,)g(u,) = —(— u, F (u,)

where the result that

1 GFO '
(1.40) 5 osn vy duy = -2nFo(uz)

and definition that

(1.41) [E(uz) du, =1

were used.

It is at this point that the problem requires some

special attention. There had been several " a priori'
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prescriptions given for the integration across the pole
but every different approach gave a different distribu-~
tion function. Since every prescription consistent
with the differential equation and the initial condi-
tions is a wvalid solution to the transport equation and
since the latter has been linearized, it follows that

a superposition of all stationary phase solutions is
also a solution. Van Kampen's contribution came as a
result of a basic change in the consideration of
solutions. Extending allowable solution to distributions
in the sense of L. Schwartz [Schwartz, 1950],he
allowed solutions of (1.39) to take the form

2.2
— 8n"e n, 1
(1.42) g(uz) = uzFo(uz)[:E el Aﬁ(w-kuz)

Z

where P indicates that the Cauchy principal value of the
resulting integral is to be taken and the symbol,
6(w-kuz) represents the Dirac delta function. The
algebraic form of the functimnA(wgk) is determined by
the normalization condition expressed by equation (l.41).
Letting the distribution function assume such a
character might at first sight seem somewhat unorthodox
but its form can be readily Jjustified. Consider the
Boltzmann equation for the case where collisions are
important and assume that the collision term is of the

form
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(1.43) 3E = + ¢ £(F,U,%)

coll
where ¢ = constant.
Applying the very same procedure as outlined above

would give

8n2e2n

(1.44) (w-ku, *ic)glu,) = "EE"Q u,F (u,).

In the limit of zero collisions, this becomes

81t2e2no ()
F (u
= mk Uz Yo Z
(1.45) g(u,) = i‘i‘:}) Zw-kuz-f- ic) -

mk -kuz

2 2

(1.46) = ST ° o uF, ‘[P —t iné(w-kuzﬂ

[Dirac, 1958] . This is at least a plausibility
argument Jjustifying the form of the distribution func-
tion, E(uz).

Returning to van Kampen's stationary phase

solution (1.42) and applying the normalization condition
(1.41), we obtain

22
8ne n, 1:’j/uzl?u(uz)

—= du + A(w,k)

(1.47) 1 = W z

which gives a prescription for determining A(w,k).
The appearance of the new parameter, A(w,k), makes it

possible to satisfy the consistency equation

(1.41) g(u,) du, =1
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without having to relate w to k.
Finally, van Kampen was able to show that the
perturbation distribution was given by a superposition

of stationary waves such that

(1.48) F(z,u,,t) = ffm C(k,v)gkgv(uz)eik(z'w)dk av

where the only spatial variation is in the 2z direction
and C(k,v) is an expansion coefficient the existence
of which can be shown and whose algebraic form depends
on the initial conditions.

Although van Kampen's work represents a signifi-
cant initial step in the stationary wave approach to
the transport equation, it is limited by a rather
unphysical assumption, namely, that Fo(ﬁ) never be
zero and contradicts the conclusion made by Landau on
the existence of a dispersion relation. The clarifi-
cation of these points together with a major revamping
of the method of stationary phase was the subject of a
paper presented by K. M. Case [Case9 1959] o

In the remaining part of this work, we will make
an effort to bring to light the major points of Case's
method and to show how a modification of the work donme
by Shure [Shure, 1962] , an enlargement of Case's
original paper, can lead to an extension of the

method's range of applicability.
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IT THE SOLUTION OF THE INITIAL VALUE PROBLEM FOR THE
CASE OF A CONSTANT OUTSIDE IMPRESSED MAGNETIC FIELD

The first complete application of the normal mode
analysis to the treatment of the transport equation is
due to Case [Case, l959]and.was later amplified by
Shure [shure, 1962] . It is the purpose of this
chapter to:

a.) Delineate the major features of the normal mode
technique and Shure's contribution.

b.) Extend the work of Shure to the treatment of an
initial value problem for the case of a plasma
immersed in a constant outside imposed magnetic
field whose direction is that of the longitudinal
plasma oscillations. Furthermore, we must stipulate
that the medium is characterized by an over-all
charge neutrality but may possess local inhomo-
geneities in the electron concentration.

c.) Indicate the relationship among Shure's work, the
present endeavor, and the more limited problem
that Case considered.

We can best achieve the above stated purposes by

first outlining the initial portion of Shure's work.

2.1 Linearization of the Transport Equation

Restricting our attention to those physical
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systems that may be treated by the classical statistical
mechanics, we may find a first order approximation to
many of the system's properties by solving the transport
equation together with the four Maxwell relations. The
singlet density transport equatidn dérived by Vlasov
bﬂasov, 1945] is

(2.1) a_t_(F,E,t) +wJ F+aGF=- %% o1l
where the meaning of each term was given in equation
(1.3). In order to gain a clearee insight into the
inherent limitations of our method, we shall elaborate
somewhat_on the physical conditions that are required.
The acceleration, a(Tr,t) is said to be smooth and the
potential, ¢(T,t), smeared out. This imposes some
rather strong restrictions on the type of system that
we may consider. We must stipulate that n)%» 1,
i.e. the product of the undisturbed electron density
and the ! volume of effective interactions'’ defined
by the Debye length cubed must be much larger than
unity. Each charged particle therefore sees many other
charged particles in its surrounding volume of
magnitudegz\%o

oF
o% coll.
may interpret this as Signifying that binary collisions

In what follows, will not appear. We

are extremely infrequent or that we are not interested

in variations of F(T,u,t) that occur in the time interval
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{

Iv-v'1

(2.2)  (8%) 7;,

Here, ‘Z is a characteristic length of the system
satisfying the condition that { « ’lD ‘and v and
v' are the electron velocities before and after the
violent interaction of a binary collision.

In passing, we may add that a collision term of

the type

onlcr1
ot

(2.3) co11. = —cf(T,u,t)

where ¢ is a constant and f(T,u,t) is a distribution
function representing a small disturbance from the
equilibrium state, may also be considered although we
shall not do so here.

Finally, we arrive at the strongest restriction.
The equation (2.1l) is non-linear since the acceleration,
a, varies as the electric field, which in turn varies
as the distribution function, F(Tr,u,t). In order to
avoid the complications of non-linear techniques and
still consider many meaningful physical problems, we
shall obtain a suitably linearized transport equation
by placing further restrictions on the nature of the
ionized system. Assuming the function, F(r,u,t), to
represent an electron distribution that is not far
removed from the equilibrium distribution, n F (), and

describing those relatively few electrons whose
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distribution differs from those in the equilibrium

state by f(r,u,t), we write

(2.4) F(T,u,t) = n F (u) + £(z,u,t)
where

(2.5) nOFo(E) > f(r,u,t)

and n, is the density of electrons in the equilibrium
state. This supposes that the number of electrons
giving rise to the local electric and magnetic fields
is very small compared to the total number of electrons
in the system. Inserting these conditions into the

transport equation and remembering that g% has

coll.

been set equal to zero gives

(206) (;9H9t)

oo
&

+u YL+ a G ,(aF +1) =0

where the condition that noFo:> f has not as yet been
used. Summarily dropping f with respect to noF° for

the case of a local acceleration given by

(2.7) a = %[E(th) +g (Bo’i: +B(r,t))

would give incorrect results. In the above:

e = the electric charge and therefore represents a
negativelquantity°

m = the mass of the electron.

E(r,t) = the electric field caused by the local
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inhomogneities in the electronic concentration.
B(T,t) = the associated or self-consistent magnetic
field due to the electron currents and related
to E(r,t) via the Maxwell equationms.

Baﬁ = a constant outside imposed magnetic field whose
magnitude is such that it remains constant
throughout the ionized medium and whose direction
is that of the longitudinal plasma oscillations
i.es the k or z direction.

It is important to note at this point that Case
[Case, 1959] drops the self-consistent magnetic field
in his treatment. Although, this is usually quite
small due to the u/c factor, the present approach will
include the effect. |

Imposing two more limitations on the system permits
an adequate treatment of the acceleration term in the
transport equation. Supposing that the initial distri-
bution Fo(ﬁ) is isotropic in velocity and that the
perturbed distribution, f(r,u,t), varies spatially only

in the argument 2z, we write
(2.8) Fo(u) = Fo(lul)
(2.9) f£(r,u,t) = £(z,u,t)

where equation (2.9) implies that all field quantities
vary only in z and t, i.e.
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(2.10) E = E(z,t)
(2.11) B = B(z,t).

Keeping the above restrictions in mind, we may write

the full E°T7u(noFo'*f) term as

S n,e n_e —
(2.12) a- vu(noF°+f-) = E'qu +T[ ¥ (B k+B)] o quo

em — e /- A
+ EE°vuf +E(u )(Bok)°vuf+-— (uXB) Vu o

The third and fifth terms on the right hand side of
equation (2.12) are dropped since they involve the
product of two first order terms. The second term
on the right hand side is identically zero due to the

isotropic nature of F09 i.eo,
-— - — A _— L —
(2.13) [u X(Bok+B)] 'VuFo = -(B°k+B)°(uX QuFo)

But, for an istropic Fo’

(2.14) uXxQG,F, = 0

We may therefore write the linearized Boltzmann
equation for the case of a collisionless plasma under

the influence of a constant magnetic field as

{2.15) Q_i:( Z5U,%) +uzaz+ (uX k) v f = —gﬁ(z t)° Vu 0°

O)

It is interesting to note that a constant. outside

applied electric field,ﬁo,would have introduced an
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inhomogeneous term in the Boltzmann equation, i.e.

Eooifu 0° The assumed isotropic nature of the equili-

brium distribution is the characteristic that permits

such an introduction in the magnetic field case.,
Finally, we must add that our linearization of

the transport equation is valid only for certain

values of B°° In equation (2.12), we dropped the second

e

- A —
order terms .w1th respect to E(—:(u)( Bok)"vuf $ this

implies that

n A - A\, -
(2.16) %XBok » E(z,t) + 13"><A13.(z,,1:).,

Clearly, our equations cannot hold for the case where

B, is so small that the left hand side of (2.16)

becomes of the same order of magnitude as the right hand
side. They do hold, however, when Bo = 0 for then

the three last terms in equation (2.12) vanish.

2.2 The Maxwell Equations in Component Form

The perturbed distribution function, f(z,u,t)
gives rise to the two field quantities E(z,t) and B(z,t)
and is related to them via the four Maxwell equations.

In component form, these are

0E, _ .
(2.17) 37 = 4mne j’ f(z,u,t) du




(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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0B
—2
0z 0
oE 1 an
0z ¢ 0t
OEX ) 1 0B
0z - c 4%
0. B,
ot
0B dE ®
1 4me -

- 3;1 =5 353 + = j[w uxf(z,u,t) du’
9B oE ®

%'5?I + 4Ze ]' uyf(zgﬁ,t) du’

1 7z . 4me /. = 3
0=%35 *+ 5 » u f(z,u,t) du’.

Combining equations (2.18) and (2.21) indicates

B_=constant. Choosing any constant other than

Z

would, however, by physically meaningless since

exists in the plasma no process that gives rise

constant magnetic field in the z direction.

that
Zero
there

to a

2.3 Longitudinal and Transverse Mode Analysis

The above set of five coupled partial differential

equations can be solved if instead of seeking solutions

of the linearized transport equation as it stands, we
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attempt to stlve a modified first moment of the latter.
Thus, a solution is possible if we seek

"

(2.25) gx(z,uz,t) f]:; uxf(z,ﬁgt) dux duy

(2.26) sy(z,uz,t) E f]:w uyf(z,ﬁ,t) du duy

(2.27) g,(2z,u,,t) = ff_: u, f(z,u,t) du du.

In the above, gx(z,uz,t) and gy(z,uz,t) are referred

to as the transverse or x and y modes whereas gz(x,uz,t)
is called the longitudinal or z-mode. The differential
equations satisfied by these functions can be obtained
by multiplying the linearized transport equation by Uy
where a = X,y,2, and integrating the result over the
range of u, and ug i.e. -wgu, u <+e. Performing
these operations on equation (2.15) and integrating

by parts yields

08, (z,u,_,t) g
X pA X _ ne
(2.28) 3T +u, 350t ng 5 Ex(z,t)F(uz)
aSI(Z’uz’t) 651 ne
(2.29) 3% +u, 325 - 98, = Ey(z,t)F(uz)
d0g_(z,u_,t) g
2 z z _ -ne dF(u,)
(2.30) 3T tu, 3= o quz(z,t)duz z
eB

where £ is °'E% , the cyclotron frequency




(2.31) P(u)) = ]]'” P (1) duy dug

and where the fact that Fo is an even function of

velocity with the characteristic that

(2.32) F, = u P, - u F_

J

-0 -0

was used. Similarly, we assume that

oo o0

= uxf \ = n_f

=0
—o0 J

(2.33) £ \

-0 -0

A comparison of the two transverse modes indicates
that the intermode coupling factor depends directly on
the presence of the constant, outside impressed megnetic
field, Boo The symmetry between the equations is
expected since the only preferred direction in the
system is the z or longitudinal oscillasion direction.
We also note that the z-mode of oscillation is totally
unaffected by the presence of the magnetic field, Bo%o
The latter is expected, however, since there can exist

1 11

no coupling between the ' current’’, g,(2,u,,t) and the

field, B_, i.e.
(2.38)  (u,K)X (Bk) = 0

Let us discuss, at this point, the physical
significance of the functions gx(zguz,t)9 gy(z,uz,t)
and gz(z,uz,t)o This can be done by considering the
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definition of electric current density i.e.
- Ll —— po— B
(2.35) j(z,t) = e j’ u f(z,u,t) du3
=00

(2.%6) = e J(z,t)

where J(z,t) represents the electron current density.
However, we may consider J(z,t) to be the u, integral

of

dd _— -
(2.37) 53; = fjl u f(z,u,t) du_ duy

o0

Consequently, we may interpret the functioms ga(z,uz,t)
defined previously as follows
A oJ

(2.38) g, (z,u,,t) = i°5§;

(2.39) Sy(zeuz‘st) = 3'%%;

<

3

(2.40) gz(z,uz,t) = k-

@

u

N

This implies that ga(z,uz,t) is that component of
electron current flowing along the a direction and due
to all electrons whose u, component of velocity lies

in the range u, to u -+duz.

Z
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2.4 Summary of the Transverse and Longitudipal Modes

with Corresponding Component Maxwell Egquations

The problem has, therefore, been reduced to solving

the following sets of coupled eguations

x-mode (transverse mode)

' og 0g
X —X - . he ‘
(2.41) Tt U, 370t st m Ex(z,t) F(uz)
" JE 9B
y —x . _1_JX
(2.42) 02 - ¢ 0t

9B dE_ r®
(2.83) 3E - -Lgx_tme |

y-mode (transverse mode)

d g
_EI — = B
(2.44) Tt Yy 37 ng - Ey(zgt) F(uz)
. 0E 0B
—X . i X
(2.45) 3% =5 7%
dB_ OE *
A x _ 13 4me [-
(2.46) I S Tt o _ gy duz
z-mode (ldngitudinal mode )
d 88, _pe aF(u_)
(2:47) 552+ U, 530 = o g B(2) g

—_—Z
(2.48) 3% -4 e ]' 8, duz
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o0E g
(2.49) 5;1 = 4me ]P —Z_ 4y

(2.50) B. =0

2.5 The Normal Mode Approach to the Solution of the Initial

Value Problem for the Longitudinal Mode

The initial value problem for the longitudinal
mode has been solved by Case. It is briefly outlined
here in terms of our notation for it brings to light
the main concepts of the normal mode approach.
Consider a spatial Fourier decomposition of the

equations (2.47) and (2.49) such that

(2.51) 8,(z,u,,t) ~ u, B (u,,t) e™5?
(2.52) E,(z,8) ~ E (t) e'*?

Equations (2.47) and (2.49) then become

dg, (u,,t) _ _
(2.53) %l‘— z + iku g, = T2€ E, () F'(u,)
(2.54) 1ikE, (t) = 4me [”‘ Ek(uz,t) du,

where

dF(uz)
(2.55) F'(uz) = g
z
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Making the assumption that the functions have a time

dependence of the type e~ikUt 4 e,

(2.56) () ~ g , (uz)e-ikVt

-ik/ ¢
(2.57) EBy(t) ~ By , e

and introducing this into (2.53)’ and (2.54) yields
2

(2.58) (u, V)sy (u,) = ;g—- F'(uz)~[ g, (u,) du,

=

-00

. 47 =
(2.59) Ey, = ?ﬁ? ];Q &, (uz) du,

where the k subscript is dropped for convenience.

There exists some degree of arbitrariness at this point

concerning the value to give the integral appearing in

equations (2.58) and (2.59). .Since equation (2.58) is

linear in g)}(uz)9 we may normalize the integral to

any function of k and ) , say

(2.60) [_: g, (u,) da, = v(ky)

For convenience, however, we let y(k,) ) =1. This
means that we are left with

2
(2.61) (u,-Me, (u,) = 2 F'(u,)

41e
(2.62) Ey = Tr
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We must stop at this point to consider the ultimate
goal of this procedure. We seek & set of functions

{gy (uzi} which is complete in u, and whose component

Z
functions, g, (uz), are the so-called normal mode or
fixed frequency solutions of (2.61). The set of normal
mode solutions is complete in the sense that any
function, G(uz), may be expressed as a sum of discrete
‘normal mode solutions plus an integral over the

continuous normal mode solutions, i.e. L.

& -

(2.63) 6(u,) = ) ay(k, V)6 ) (u,) + [ g, (e
[+ 2

—c0
In order to find the expamsion coefficients, aa(k,j)h)
and Ak(ﬂ), however, we must also find the normal mode
solutions to the so-called adjoint which is chosen such
that its solutions, g+Vo(uz),are orthogonal to the
solutions, gy (u), over the range -» <u, <« whenever
the normal mode indices, ) and J' are different.

Returning now to equation (2.61), we see that its

solution may be segregated into various classes.

Class 1.
Here, V is complex with a non-zero imaginary

part. Therefore, we have

w2 F'(uz)

(2.64) g uj(uz) - ;5 W

where [/j is a root of
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5 g
(2.65) 1 = v_v:g_ [ F'(""z) du,
6 Tu -y
Class 2a.,
Here )) is real. Letting the qor’m&l mode solution
assume the character of a distributiaﬁ in the sense of
Schwartz,[Schwartz, 19501 we obtain

2 '
. w F'(u)
(2.66) g ,(u,) = i;% P{ﬁ‘?fr} + AWHsu, - Y)

Z

where P indicates that the Cauchy principal value of
the resulting integral must be taken and 6(uz-)l) is
the Dirac delta function. The function A(Y) is
determined by

2 -
w F'(u,)
(2.67) l—-};%Pf (u—szﬂ'Tduz‘s A(V)

-0

Chkass 2b,
Here, J is real, but F'() ) =0. We again
obtain the solution indicated for class 2a but, in this

case, the principal value sign is not needed.

Class 2¢.

Again, Y is real but F'(J ) =A(/) = 0.
Consequently the solution is
2 ]
wo F'(u.)
2.68 u ) = B —2—
( ) 8 Vi( 2) 2 (uz_ Vi)
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and

F'(
(2.69) 1=—B[ -(——u—)ydu

" These solutions are analogous to the discrete solutions

for the case of a complex value for ) .

20591 The Adjoint Egquation

The associated adjoint function satisfies the

foilowing algebraic equation
V + ZE ' +
(2.70) (u,-v")g i (u,) = 2 F'(u,lg ,,'(uz) du,

where we normalize the integral to unity. Consequently,

we have

(2:71) (u, - V)&, (u,) = =3

2.5.2 Orthogonality

The above adjoint equation was chosen such that
its solution g+v'(uz) would be orthogonal to g, (u,)
over the range of integration, -e=<u, < +e«. This may
readily be seen as follows. Multiply (2.61) by
8+v'(uz) and (2.71) by g‘)(uz) and subtract the
results; this gives

2
2:72) (' =D, (38", (5,) = B[F' (w06, ;)-8 (0]
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Integrating over the raﬁge of velocity of u, yields
= +
‘ , ~

(2.73) (V' =V) j:, s)}(uz)g)/n(ui) du, = O.
Consequéhtly, we ﬁay»ﬁrité

. ® . + ~ h 7
(2.74) ji “g’,(uz) g V'(uz) du, = 0 Vi v

This demonstrates orthoéona;ity.

2.5.3 Solutions of the Adjoint Equation
The egquation (2.71) like equation (2.61) has sever-

al solutions that must be separated into various classes.

f Ciass 1
Here, j)/ is complex ﬁith a non-zero imagihary part.

Therefore, we have
2

o + w 1
(2:75) € Y, = = (CHEy7A)

2

where ys is a discrete root of

2 * [} -
o0 w F' (u_)du
(2.76) 1 = f_ﬁF'Wz)s*uj(uz)d“z - ;% f _(——uzz= ,/§>

This is seen to be in agreement with the root as found

in equation (2.65).

Class 2a
Here, 3/ is real. Again, admitting distributions

in the sense of Schwaftz, we have
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2
(2.77) &', (u,) =E§P{ L }+ A (V)s(u,-»)

uz- Vv

where AT() ) is determined by

oo i
F (uz) du,

W2
(2.78) lak—gP ICOEY DS 'S ACIPUCS
z

Consequently,

Ay
(2.79) A'(W) = —ST_F y)‘i
Class 2b

Here, )) is again real but F'() ) =0. We must also
stipulate that A(Y)A0. The solution in this case
cannot be similar in form to that of class 2a since the
condition expressed by equation (2.79) cannot be satis-

fied. A consistent solution is
+
(2.80) g", (u,) = 8(u, -V)

Inserting this into equafion (2.70) gives
w2 -
(2.81) (u,-V)6(u,-Y) = ;5[ F'(u,)é(u,-y) du,

= F'() ) =0
‘This is an identity. Therefore, our delta
distribution solution is consistent with the adjoint

equation.

Class 2¢
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_ /
Again, V is real but F(V) = A(J) = 0.
Consequently, the solution is
2

w
+ . P 1
(2.82) & () = S @ =)
: i k z i
where ))i is a discrete root of
2

« ]
w F (uz) duz

.5
(2.83) 1 =02 RN

2:5.4 The Normalization Coefficients
Returning to the results of the orthogonality
relation,equation (2.74), we now discuss evaluation

when Y = y' for the discrete and continuous cases.

Discrete Case:

For the case where ) =)', equation (2.74) becomes

(2.84) /-:g Va(u?) 8+Ua(uz> au, = N(Y )

where L/a represents the discrete normal mode index and

-may be real or complex and N(Jja) is the normalization

coefficient for the discrete case. Inserting the

proper normal mode solutions into the above gives

F"(uz)

2 oo
2
y (v—vn, d
(2.85) N( a) - k2 1321:77;72 u,
where t}a represents the real or complex discrete roots.

Continuous Case:



- 38 -

The normalization coefficient for the continuous
case may be derived in the same manner as that for the
discrete case but a 1little care is needed in performing
the integral over the product of the two singular

functions, g V(uz) and ng(uz). Symbolically, we find

o

(2.86) f_,, sy(uz)g+y-(uz) du, = N(y)6(¥V-v")

where
2 2

22) + [n E-gF'cm ]

(2.87) N(V) = —
F'(Y)

Extreme care must be exercised in the interpretation
of equation (2.86). A rather detailed treatment of
the normalization coéfficient for the continuous case
illustrating the use of the Poincaré-Bertrand trans-
formation [Muskhelishvili, 1953] will be given in the

consideration of the x and y mode solutions.

2.5.5 The Expansion Coefficients

Case [Case, 1959] was able to show that the set
of functions, {-gy (uz)} is complete in u, such that
any function of u, may be expressed in terms of these.
Specifically, he showed the existence of the expansion

coefficiencts, a (k,) ) and Ak(ﬂ ), in the expression

(2.88) Ek(uzso) = Z aagk Va(uz) +f Ak(U' )Sk’v' (uz)dl/'

x
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where g, (u,,0) is the initial value of Ek(uz,t)o The
expansion coefficients may therefore be obtained in a

straightforward manner.

Determination of aa(k9 Va):

Multiplying (2.88) by g+,, (uz) and integrating
«

the results over u, gives

(2.89) e, (k, V) = ﬁjf:’ s+ua<“z)§k<“z’°) du,

Determination of A, ( DR
Similarly, we multiply (2.88) by g; (uz) and

integrate over u this yields

°
P Ad

(2.90) Ak(v ) = ﬁr%rj ]'w g:,(uz) Ek(uz,o) du,

-0

2:5.6 Final Solution to the Longitudinal Oscillation
Problem

We are now in a position to express the answer
to the longitudinal oscillation problem. At any time,

t >0, we may write

- -ik pJ_t
(2.91) | By(u,,t) = ' g 8y ok © oy
1]

+ f“ 5 gy, (u,) T HEVE 0

and remembefing that
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(2.92) @, () =;—’2—‘9 [ g (u,,t) du,

and

29 1. [ 6, a,

we obtain

-1k )t * |
(2.94) @y (%) -;«%i[Zaae Va® [Akc»’)e*ik»’tau]

o

Taking the inverse Fourier space transform of the above

gives us therefore

(2.95) &' (zu,,t) = 2% jf By (u,,t) e7H2 ak

(2.96) o(z,) = [ o (6) 7"

Actually, we must multiply (2.95) by u, to obtain
g,(2,u,,t) i.e. |

(2.97) Sz(zouzot) =u, g'(z,uz,t)

This then completes the solution for we now have the
" current', g,(z;u,,t),and the potential, (z,t),as
functions of their arguments. The last qQuantity also
implies that we know E(z,t).

This brief outline on the normal mode analysis of

the longitudinal oscillation problem illustrates the
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" major features of the method and should render our

treatment of the transverse modes somewhat easier.

2.6 Right and Left Circularlz Polarized Modes

The coupled nature of the transverse modes of
oscillation requires that we attempt a simultaneous

solution. This can be accomplished by letting

(2:99) B,(2,8) = B (2,t)

I+

iBy(z,t)

(2.100) g,(z5u,,%) = g,(2,u,,t) + ig (zyu,,t)

where the plus mode is referred to as "

right circularly
polarized' and the mpinus mode is called " left
circularly polarized' . Using these definitions and

combining the x and y modes gives

og 0g

— — 7 ne
(2.101) 3Tt U, 3ot Qgi -5 Ei F(uz)

0E 0B

+ i "=
(2.102) 53% = £ T 5%
9B 3E =
+ i~  4me

These three equations are now in a form that permits

the use of the normal mode technique.
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The above development leading to the formulation
of an oscillatory mode and two c¢ircularly polarized
modes is simply an amplification of the work done by
Shure [ Shure, 1962]. The importance of this background
formulation coupled to the rather limited accessibility
of Shure's dissertation makes this repetition desireble.
It is at this point, however, that the development of

Shure's work and that of the present thesis diverge.

2.7 The Initial Value Problem for the Transverse Modes

and the Matrix Formulation

The purpose of Shure's dissertation consisted in
showing that the functions gi(z,u,t) and the field
quantities, E+(z,t), B+(z,t) could be determined
provided that—their vaIﬁes were known at certain
boundaries for all times. In solving the above
boundary value problem, he Fourier analyzed the time
variable and assumed that the space variable of the

i(w/yY)z

quantities 8,9 E+ and B+ varied as e

s Where
3/ is the normal mode (van Kampen calls it stationary

mode) index. Combining the three quantities, g o
b3

) H{i”,o

adjoint state vector' ,

Eiﬂ’ Bi,v’ into a so-called "state vector"

and defining a new "

+
Y:‘JU s Where




e
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( (L]
Si_y1 €y
(2.104) ‘{’iv = | E,, : \[/;J = E;V
B B
+y ty
| J L ,

such that the two vectors would be orthogonal whenever
their normal mode indices differed, he was able to
show the.existence of a complete set of functions.

This was the object of his work for he could then

express
¢ 3
g+
(no normal mode
(2.105) ¥ = E,
= = index)
Bi
L )

in terms of the complete set of functions {‘f;q}o

It is the ©purpose of this work to show via the methods
of normal mode analysis that there exists an analogous
complete set of functions that permits the solution of
the associated initial value problem.

In order to facilitate notation in what follows,
g+(zguz,t) will simply be designated as g(z,uz,t) and
s;hilarly for E+(z,t) and B+(z,t)° The more complete
notation will b; reintroduc;d at the end.

Returning to the three circular mode equations,

(2.101), (2.102), and (2.103), and taking a Fourier
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transform of the space variable such that
(2.106) g(z,u,,t) ~ g (u,,t)et*?
(2.107) E(z,t) ~ E,(t)elk?

(2.108) B(z,t) ~ B, (t)el*?

gives

(2:109) & = 5(:0-¥u dg + 22 E(t) F(u)
(2.110) $& - _ume /:: g(u,,t) du_ ¥ keB(t)
(2.111) $8 = 4+ ckE(H)

where the new functions g(uz,t), B(t) and E(t) each

carry a k subscript. This, like the + and - subscripts

that the above functions should carry, is not explicitly

introduced in order to avoid the confusion that is

encountered when the normal mode indices are inserted.
Rewriting the above in the matrix form and

defining two new quantities, ‘f and H yields

(2.112) %EY-— = HY

where Y is a three element state vector " defined

by
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r -
g(u,t)
(2.113) ¥ = | E(t)
LB(t)
and H is an integral matrix operator given by
( )
ne
1(+0-ku,) 2 P(u,) 0
(2,114) H = —4n§[ 0 + ke
0 + ke o
~ o

In order to find the necessary normalization coefficient
and to determine the expansion coefficients aa())agk)and

Ak(Q ), we also define an adjoint matrix equation given

by

+
(20115)%-?—— - Y*mt

where

(2.116) ( Y*,5BY ) = (W*E*, ¥V )

This last stipulation will serve as our orthogonality

condition.

2.7.1 Adjoint Equation

The component elements of the matrix operator HY
can be determined by using equation (2.116) where we

define the inner product (X',Y) as

(2,117) (X*,¥) = /j G+(uz)g(uz) du, + e'E + b*'B
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where Xl+ is a three element row vector given by

(2.118) X* = [6*(w), e*, 7|

Using these definitions and remembering that in our

case,

(2.119) Y* = [g'(u,,t), E'(8), B (1))

yields
( ne ]
(+-ku,) -;n-f F(u,) 0
(2,120) HY = | -4me 0 ¥ ck
0 + ck Q _
L y

The usefulness of the above will become evident when

the normal mode adjoint equations are solved.

2.7.2 The Normal Mode Solutions
Returning now to equations (2.109), (2.110),

(2.,111), we propose that the time dependence is of the

-ikyt

form e such that

(2.121) g(u,,t) ~ &, (u,) e'j‘k‘)t

which implies that

(2.122) E(t) ~ E, omik/

(2.123) B(t) ~ B, e~/
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where the index, )/ , is a complex variable and may be
continuous or discrete. Inserting these quantities

into the equatioms (2.109), (2.110) and (2.111) yields

(2.124) 1fk(u,-¥)F0R] g, (u,) = 52 F(u,)E,

(20125) -ik))EV = =4Te [

gy(uz)duz + keB,

(2.126) 1V B, =+c EV

where we must keep in mind that the quantities g‘,(uz)9
Ey, , and B, should be written gi V,k(uz)' Ei Ik and
Bi P,k respectively.

It must now be remembered that Ey is an expansion

coefficient such that

-ik t
(2°127) E+k(t) = z aa(k’ ))Q)E"& e y{x +
- 04 :

. f“’ A (VIE, o1V by )

and where Bik(t) and gik(uz,t) are of the same form i.e.

-ik Y. t . it
(2.128) B, (5) = ; BBy o+ LAk(;))B),e Wty
-1k V_t
(2.129) g+k(uz,t) = §: a“SY& (uz)e «
- x

+ f_o OIS (uz)e'ik') tay
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where aa(k, »&) and Ak(v ) are expansion coefficients
whose algebraic forms will be determined. What is
important to note is that the choice of either Ey, or

By, is arbitrary since it is the product of aaEy, ’
(o3

and 4, (YIE, , and aaB,,a and A (V)B, which

will determine the quantities gik(uz,t), Eik(t)’ and

a
Ak(»)) only and not the three quantities, Bk Eik

B+k(t)° A particular choice of Ey, alters a_ and

and B+k° Shure [Shure, 1962] resolves a similar

point by simply stating that the equations (2.124),
(2.125), (2.126) are linear and homogeneous in the three
quantities, g),(uz)9 E) , and B, . A convenient

choice for E,, is

(2.130) E’) = l_&le_l))_

k
This implies that our equations become

we

2.151) [0 FE | 8, () = BV F(wy)

(2.132) j;: 8, (uz) du, = (c2- Ve)

(2.133) B,, = 7 58

We may now consider the solutions of the above.
Again the allowed solutions to (2.131) must be broken

up into various classes.
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Class 1
These are the solutions for complex )’ valuesg

this means that

(2.134) g VJ(UZ) = k2 J (uzﬂ VJ:%)

bwhere y% are the roots of the equation

Class 2a
In this class of solutions, we allow distributions

in the sense of Schwartz and let g’)(uz) take the form

2
F(u,) —
(2.126) g , (u,) = 35 Y P{-—u—z_} + AV )6(uz-\)+g)
u +

£
k z“y k

where y’ is a real and continuous variable. The
symbol P indicates that the principal value of the

resulting integral is to be taken and é(uz==fj: %)

represents the Dirac delta function. The function
A(Y) = Ak(;) ) is determined by the auxiliary
condition (2.132) i.eo

F(u ) d
Ttz L N ()
z_’)”+ E)

2 o
(2.137) (c?- y2) - BV P[
k (u
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Class 2b

In this case, »’ is again real but F(V + %)ssoo

Again,

2

R B}

(2.158) 8y (u,) = &=V {———;u—i—@ P A6, Y TD)
EES-

and A())) is determined by the auxiliary condition

2 oo
W F(u_ ) du

(2.139) (F-y°) - BY Pf —2 =% - AW)
k (=YD

Here, the principal value sign is not needed but is

indicated to distinguish this case from Class 2¢-

Class 2¢

Here, )/ is real, F()) &+ kg)m 0 and )\()))=Oo

Consequently, we have

) -3 ¥ Tey)
2o 4 = o -
and
2 o0
w u_ ) &
(2.181) (c®=)9) - k—g ))i[ ; ; =0
k

00

2.7.3 Solutions to the Adjoint Equations

Using the definitions expressed by equation (2.115)

and the evaluation of H' given in equation (2.120), we
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obtain the three adjoint equations

(2.142) 38 (“ '8 L 1(s0-ku)g" - 4meE*(t)

+ oo
(2.143) %% = %f j;” F(uz)g+(uz) du, + keB*

+
(2.144) §& « T keE'

where we should write gi&ugt)9 E:k(t) and B:k(t)o

Again, we assume that

+ + -ikyV t
(2:143) g7 (u,st) ~ &, (u,)e
which implies that

+ =ik V't
y,e

(2.147) E'(t) ~ E, e~k/®

(2.146) BY(t) ~ B

Inserting this into the adjoint equations (2.142),
(2.143) and (2.144) gives

: - + +
(2.148) 1[k(uz =y) +ngp = -4meE)

(2,149) -iky BY, = F kcE}
V v

. + ne * + +
(2.150) ~1k))Ey = j;m F(uz)gp (uz)duz + kcB

A convenient choice of E; is

nes)

(2.151) EV = =1

This reduces the adjoint equations to
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2
W
(2.152) (u, =) 7 £) &', (u,) = ;g.z/

(2159 (2-y®) = [ "2 &, (u,) a,

- 0

+ -~ nec
(2.154) BV = + T

+
V4

be obvious at this point. It must, however, be made

The reason for choosing E as we did can hardly
clear that the choice is at least self-consistent, i.e.
the adjoint equations are linear and homogeneous in
the so-called field quantitiess g;j (uz),,‘E*'w and
Bt}o We must constantly bear in mind here that the
only reason for considering the adjoint equations is
to find a set of function89{§{3 (uZZ}(adjoint state
vectors) that will be orthogonal to the physical
system's state vector set, ﬂéﬁuzésg which is complete
in u, in the sense that any vector, G(uzgo) may be
expanded as a linear combination of the set, {gé(uz%a
We may now concentrate on obtaining the solutiomns to
the adjoint equations; +these may also be considered

as falling into various classes.

Class 1
These are the solutions for complex values of )

with s non-zero imaginary part. Here we have

2
5 w Y
2,1 + ) = L2 ___¥Yi
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and
w2 i F(u_ ) du
(2.156) (c®- Y2) = 2 V. 2z
37 k2 3 (u,- V.7 2
o z J k
Class Ra

In this case, )} is real and F(y)i; %) # 0,
Considering distributions in the sense of Schwartz,

we have

2
W
(2.157)g’, (u,) = ;5 Y p { 1 Q} + /\+(1/)6(uz=;1:i%)

u, <M+ i

where Af(ﬂ ) is determined by the auxiliary condition

2l
(2.158) (c2-)?) -2 Y

2 R L8 It
- o ) W +5) AT

where we see that

(2.159) X*(V) - —ALL)

F(Y )

The above relation is a direct result of choosing

E* = :iﬁili § it will be seen that the above is
very important in the determination of the normalization
coefficient for the continuous case which will in turn

.permit us to determine Ak(;/), the expansion coefficient

for the continuous case.

Class 2b
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Here, )/ is real, F(/+ £) = 0 and A (V) 40,

Here we must take E'. = O, This is evident from the

V

following. We would have

: 2

w 1 -Q
(2.160) g*V (u,) = k—g 1% P{m}J, ATW)8(u,-V+ )
and
F( )
(2.161) (02 V f( ° duZ + }\+(\))F(Vi‘g‘
u,

or

0

(2.162) A(¥) = AT(WIFWV 5

as in equation (2.159). Clearly, this can not hold,
for here F(V + %) =0and A(Y)FAO. A consistent

choice is EY

y = O. This implies that:

(2.163) (u, -¥ TDe’, (u,) = 0
(2168 [ PGl (u,) au, = O

(2,165) B*,, = O.

Consistent with the above is

(2.166) g*,(u,) = 6(u, =¥ 7 .

The auxiliary condition then becomes




(2.167) " }."‘(uz)é(uZ Y :%) duZ = F(V +

118

) =0

Thus our delta function solution leads to an identity.
Class 2¢
In this case, 1) is real and F(\/ k) =

= A ( Vi) = 0. The solution to the adjoint equation is

2

w .

(2.168) g% (u,) = -8 )j;_g
i k (uz e)}i +

and the auxiliary condition gives

Z

F
(2169)(0-)/):—B)}f —-(-I—l—g-—du
(u, + £)

2.7.4 Orthogonality and Normalization Cepefficients

In determining the adjoint state vector Y *, we

stipulated that

(2.116) (Y *,HY ) = ( Y*EY, Y ).

But remembering that

a¥Y

ot

(2.112) HY =

(2.115) Y *H' = gt\l“

and introducing the normal mode time solutions



(2.170) ¥ ~ ¥, e ik V1t
0
(20171) Y‘FN Y'l")ue"'ikyt
we arrive at the orthogonality condition

(20172) (\) - \)n)( \P*—Vﬂ‘a&j‘) ) = 0

We must note in the above equation (2.170) is
simply the vector representation of equations (2.121),
(2.122) and (2.123) and equation (2.171) similarly
represents equations (2.145), (2.146) and (2.147).

Equation (2.172) implies that the state vectors,

&’+vo and \yu are orthogonal over the range of the
u, integrationg in this case, = <U, <+, Our

orthogonality condition may be expressed as

(2.173) w*\,qa, N VRDILR G UOLIVIRNL

x (0 8

for the discrete case, and symbolically, for the

continuous case, as

(2.174) (Y+V"\1’u ) = N(V)&(Y - V")

where N()) ) and N()y ) are the normalization coefficients.
To determine the algebraic forms of N(V), ) and N(V ),
we must consider the various classes of allowed

solutions. Basically, there are only two cases to
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consider. The solutions for real and continuous
values of )) and those solutions for discrete wvalues

of )Y , both real and complex.

2.7.5 Determination of the Normalization Coefficients

Turning now to equation (2.173) and introducing
the discrete mode solutions for ﬂf+yq and &{V , W€
obtain

o
(2.175) N(V,) =[ g+))a gy, du, + E’;}aE v, + B‘;jaBua

OO

2\2 = 2
e e
K “J -y, vH? ok a

where ‘}a represents the real and complex discrete
roots.

Turning our attention now to the continuous case,
we begin by expressing the final solution to our
problem in terms of a sum of discrete normal mode
solutions plus an integral over all continuous mode
solutions., This means that we assume completeness and
the existence of the expansion coefficients, aa(k,])a)

and Ak(V ) such that

2.176) Y, (u,,0 = ),a ¥

a Va

+ ijk(V") Y ,av

Again, we must keep in mind the fact that not all

subscripts are shown; actually, we should add the +,k



subscripts to each symbol.
Multiplying the above equation by Y )j and

integrating the results yields

(227) [T WY (000 au, = (Y LY (000 -

= Z aa [ \J'/V+ \y\{x d.uz +
& =00
+f \yl;f Ak(y")‘ifo ay "’ dau, .

The term involving the sum is seen to be zero since the
continuous adjoint state vector, \}_J L , was chosen to
be orthogonal to the system's discrete state vector,
Y\J o It is from the second term that we shall find
the ngrmalization coefficient for the continuous case.
Rewriting this second term in component form, expanding

the results and introducing the proper values for EVo

and va yields

(2.178) (\y)j Y (u,,0)) =
_ _B ff v 'Fu >A<u°>d,;° du,
(u‘v"’k)(u‘l}"’k)

2 ¢ v - L 0
P2 X () Pj'fu ACRLORLICR LR DL
k (u,-p'+ £)

"o
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l};)Pf[A(v (Y0, =V T ) avau,
k

(u,-Y 7 £)
+ ),*(V)[ AYOA Y IsGu, -PFE)6ur T

]
ay duZ

o o

2 2
+5221) Va(y ay' —9 2[ ACY Day !
k k

The order of integration in the above is immaterial
except in the first integral. Here we are dealing with
a doubly singular integral a proper treatment of which
requires the use of the PoincaréwBertrand:transformao
tion [Muskhelishvili, 1955] . Performing the delta

distribution integrations gives

(2.179) (¥, ¥ (u,,0) =

% F(u YA(W') ayp'’ du,
)) P o —
(u +E)(uz==1)+ E)
2

w = 1 '
R NCLE Pf_m'%,%:?-;

2
w * AWIDIAW") Ly
P
+ 3 VPO“’(VU”V) av

£ AT(WHAWHAW )
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W2 ” W2 N
+ Y] yanayt e Bt ] sy et

/
It is shown in Appendix A how the use of the Poincare-
Bertrand transformation and the method of partial

fractions reduces the above to

(2.180) (Y7 , W(u,,0) = N/ IAW)

where N()/ ) is shown to be given by

- 2\2
(Tz‘g) YRy e+ N
(2,181) N() ) = L&

[

F(y + 2)

2.7.6 Expansion Coefficients

Assuming as we did for the determination of N())a)
and N())) that the functions {Y\) 5 ‘i’v:} form a
a

complete set, we may express the total solutions as a
sum of discrete normal mode solutions plus an integral

over all continuous normal mode solutions, i.e.
et ? [}
(2.182) Y (u,,0) = ;aa \Eva + f.,. IS R STEAR

Consequently, the discrete mode coefficient is given by

(Y3 Y (w000
N V)

(2.183) aa(k,z&) -

where




(2.184) ¥(u,,0) = ¥ (u,,0) = E,(0)

Therefore,

(2.185) (VY ‘;,a,Y (u,,0)) =

. j_:g+v (308 (1,00, + B, £(0) + BY, B,(0)

(u_,0)
—R Vy f glf ;z T, @, * nmlli“ (E,(0) TiB,(0)).
a 'k

The continuous mode expansion coefficient may be
| obtained in a similar manner. We see from the above

? that

(2.186) A, (V) = m'l))—j ) Y, Y (,,0) du,
i where
|

(2.187) \P Y (u,,0) du, =

= f_w 8:/ (u,)g,(u,,0)du, + E}, E, (0) + BY, B, (0)

(
x/ fgku du, + X (V) (V,0) +

ne /

o (E(0) ¥ in(O))o




Therefore, we may write

(2.188) A(Y ) =

2
w g, .(u_,0)
i A‘(ﬂ)gk(JQO)+F()}¢ }%)[k—%l) P [(u——glzi-uﬁ' duz+mik(Ek(O)+in(O)):|

212
(Eg) P2y ) 4 H20)

The above certainly holds for )) in class 2a. It also
holds for )/ belonging to class 2b since then,
F(Y +£) = 0 and

gk()}so)
(2.189) A(\}) = W o

2.7.7 Final Solution of the Transverse Oscillation

Problem
This then completes the treatment of the initial
value problem for the transverse modes. The three

field quantities are given by
, -1k uat
(2:190) gy (u ;) = ) 2k Vo8, @ +

o

[_n Ak(l) )gy (uz)e':“k‘}'b a)

-ik V) _t
(2.191) Ep(8) = Y a,(k, VIE, e & 4
0 2

x

+ f_: 4,V E,, o-ikV b )
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~iky
(2.192) B, (t) = Z a, (k, Va)BVae +

x
o [, Ve

where all quantities tacitly carry the + signs
designating whether we are considering the right or
left polarized modes. The measurable field quantities
are giVen by taking the inverse space Fourier transform

of the above quantities, i.e.

(2.193) g,(z,u,:t) = 51; fgi’k(uz,t)e'ikzdk

* -ikz
f_@ E, k(1:)e dk

-

Sl

(20194) Ei(z,t) =

(2.195) B,(2,t) = 3% f B, p(t)e™* ax

It must, however, be stressed here that the
completemess of our set of solutionms, {qﬁﬁ, is
contingent on the existence of the coefficients
aa(kgl)a) and Ak())) which was assumed. A justifica-
tion of this requires the use of the methods of
singular integral equations in the solution of an
inhomogeneous Hilbert problem. This rather involved
demonstration is considered outside the scope of the

present endeavor.
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ITI APPLICATIONS

In this chapter, we shall demonstrate the use of
the previously derived general results by applying them
to a few particular cases. This should bring to light
the difficulties encountered in dealing with even the

simplest problems.

3,1 An Initially Isotropic Perturbed Distribution

Let us consider the transverse and longitudinal
mode solutions for the case where the perturbed
distribution function is initially isotropic in

velocities, i.e.
(3.1) £(z,u,0) = f(z,1ul,0).

Referring to equations (2.25) and (2.26) yields

for the transverse modes
(3.2) Sx(z9uz9o) =0
(3°5) Sy(zguz,O) = Oo

Consequently, the initial values of the spatial
Fourier transform of equations (3.2) and (3.3) are
also zero., If these results coupled to the assumption
that there exists no field quantities at times, t <O
are inserted into equations (2.185) and (2.188), we
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obtain for the transverse case
(3.4) a,(V,sk) =0
(3°5) Ak(\}) = 00
This then indicates that
(3.6) chzsuz9t) = Sy(z9uz9t) = 0
(3.7) Ex(z,t) = Ey(z,t) = 0
(3.8) Bx(zgt) = By(z,t) = 0.

Turning to the longitudinal case and considering

equation (2.27), we obtain

(3.9) g,(z,u,,0) # 0.

Taking the spatial Fourier transform of gz(z,uzgo) and
inserting the results into equations (2.89) and (2.90)
yields the expansion coefficients, aa(l)agk) and Ak(V),
for the longitudinal case. Applying the latter into
equations (2.91) and (2.94) and inserting these results
into (2.96) and (2.97) yields gz(z9uz,t) and ¢(z,t).

We may summarize by saying that a perturbed
distribution that is initially isotropic in velocities
gives rise to the longitudinal mode but no transverse
phenomena.

We might also add that it is possible by a proper

choice of f(z,u,0) to have transverse oscillatioms
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with no accompanying longitudinal mode.

3.2 Two Cases of Monodirectional Initial Perturbations

To further illustrate the use of our methods and
to indicate the uncoupled nature of the transverse
and longitudinal modes, we shall consider some
monodirectional initial distributions. Suppose that,

initially, all particles moved along the z direction
such that

(3.10) f(z,u,0) = h(z,uz)é(uy)b(ux) .

Inserting the above into equations (2.25), (2.26),
(2.27) yields

(3.11) g, (z,u,,0) =0
(3.12) gy(z,uz,o) = 0
(3.13) g, (z,u,5,0) = u h(z;u,)-

The Fourier transforms of gx(z,uz,o) and gy(z,uzgo) are
similarly zero and consequently equations (2.185) and
(2.188) yield for the transverse case

(3.14) 8, () k) = O
(3.15) 4,(V) =0

where we assumed that
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(3.16) B, ,(0) = E, ,(0) = 0.

Consequently, the results expressed in equations
(3.6), (3.7) and (3.8) hold here also.

Considering now the longitudinal case and
specifically equations (2.89) and (2.90), we have for

the longitudinal case
(3.17) 2 (V k) £ 0O
(3.18) 4, ()) # 0.

Consequently, we may find gz(z,uz,t) and ¢(z,t).

The above results indicate that electrons
initially moving along the oscillation direction, z,
will continue to do so for times, £ >0 and will not
give rise to transverse phenomena.

To complete our present consideratiops, we shall
now examine the case where electrons are initially
made to travel in a'direction perpendicular to the

direction of longitudinal oscillations. Suppose that
(3.19) £(z,u,0) = n(z,u )8(u;)8(n,)..

Applying (3.19) to equations (2.25), (2.26) and (2.27)

yields

(3.20) gx(z,uz,o) = 6(uz) u_ h(z,u_ ) du

(3.21) gy(z,uz,o) =0
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(3.22) gz(zguZQO) = uzb(uz) j’h(zgux) dux = 0,

Taking the spatial Fourier transform of equations
(3.,20), (3.21) and (3.22) and applying the results in
the determination of the expansion coefficients as
was done previously, indicates the existence of the
transverse modes and the absence of longitudinal
phenomena. Therefore, we conclude that electrons
whose initial direction of motion is perpendicular

to the direction of longitudinal oscillations will
continue in this perpendicular motion for t >0 and

will not give rise to longitudinal effects.

%2.% An Example Problem (Longitudinal Mode)

In this section, we shall consider one particular
problem illustrating the solution of the longitudinal
mode of oscillation. Consider the following total

distribution function
(3.23) F(r,u,t) = noFo(h-J.l) + f(z,u,t)

where noFo is a Maxwell-Boltzmann distribution such

that

2
(3.24) nF, =n (B) /& oPu

(3.25) B = g7




- 69 -

2 2 2 2
(3.26) u° = u_ o+ uy +u,

and n, is the electron density at equilibrium. We
next let

- -Bui
(5"27) f(z9u90) = h(Z,uxﬂ%,O) e o

Although any perturbed distribution satisfying the

condition that
(3.28) n P, > f(z,u,t)

would be valid, the above was chosen because of the
mathematical simplicity that it introduces into the
resulting equations,

Using equation- (2.51), we have

_ u
(3.29) uzgk(uz,O) = J(/’uzhk(ux,uy,o)e z du_ duy

2

_Buz

=u, Hk(O) e

y9O) is the Fourier transform of

h( ¥4 9ux9uy90) and.

where Hk(ux9u

(3.30) Hk(O) = Jﬁ/-Hk(ux,uy,O) du_ duy

We are now in a position to determine Ak(p)) and
aa(p)a9k)o Referring to equation (2.90) and inserting

the proper value for gt)(uz), we obtain
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2 —
' = g g, (u,,0) du
)\(V)sk(;),o) + ;5’ F (NP[W
(3:31) 4,0) = . —
Xw) + |n < F' (V)
K
where \(V ) is given by equation (2.67), i.e.
W F'(uz) du,

-1 - -R
(3.32)  A(Y) =1 kgP (CESTR

Similarly, referring to equation (2.89) and

inserting the proper value for g_“)) (uz) gives
a

The evaluation of the above integrals requires
some straight-forward but rather tedious algebra.
For the sake of continuity, this tedium will be relegated

to the various appendices as indicated. We have

2
2 2 _
(3.34) F(u‘z) = (%)3/ Ue-su du, d.uy'- ‘i—%_ e Pz

2 [[-284E u, o]
w -2B u_ e du
(3.35) A(V) 1 k2 Pf (uz =)
2
2 2
=1 + -15 B(1 -28 ))2%_-81) )
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(Appendix B)

where by definition,

o nv2n
(3.36) Q(B,V) = nZO %mm

2
- 5, (0) { ~2p RV ge™PY ]

(Appendix B)

sk(uz,o) Ptz du,
(3.28) -(———)du = H,(0) CUERYI®)
Z o 4

=00

= H (0)Vmz(VB )

where Z(VE\%I) is the plasma dispersion function and

Va is a discrete root.

(Appendix B)
2

J[[ YB F'(u ) j’
k
(3.39) S 2 ¢ ]/ o 2

2w2
2
= —;5 BE [-251% Vo + (1-2BV VRZ(VB va)]

(Appendix C)
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Having determined these integrals, we may write
out the necessary expansion coefficients. Consider the
continuous case first. Reducing the function to its

simplest form gives

(3.40) >

2w 2
B (0)(1+—3 ) e=B”

A = owe ) oTwS 212
k(L)) [l+—z§ B(1-2B))2¢e'Bl) )] 2 4 [—E;E B{E;Ve_Bl) }
k k

The coefficient for the discrete case is

B (0T Z2(VB V)

BE [261% Y, - (1-28V2)Vwa(VB VQ}

Let us discuss at this point the mathematical

i3

|

(
(3.41) 8 (k) =—55

n
b

nature of these results. We see that for a finite k

H (0

(3.42) 1lim &4 (V) = x{ ;
V=0 (1 + ¥ )

L2

(3.43) 1im 4 (V) =0
V> oo
where the characteristics of the function

2
Gous) Yi(p,)) = 280%(8,V ) ,e"B’)
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have been used, i.eo.

(3.45) 1im Y(B,W ) = O
y=>0

(3.46) 1lim W(B,V) =1
V Deo
(Appendix D)

We also note that
(3.47) A.(V) = 4 (-V).

The above characteristics and the fact that there exist
no singularities in the function Ak(l)) indicate that
Ak(lj) is a fairlywell behaved function of v,

Finally we must devote some attention to the
evaluation of the roots to the so called dispersion

relation:

——LF(U)
(3.48) 0 =1 + duzo

It is shown in Appendix E that, for the case of

a Maxwell-Boltzmann equilibrium distribution, there

exist no roots to the above equation of the type
(3.49) Im( V) > 0.

Restricting attention therefore to the case where

Im(j/;) < 0, we get
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n

ow
(5.50) 0-1+—;§-eﬁ{ z +ﬁ1/az(f§))a)] :

Separating the above into the real and imaginary parts
and solving for Re(;}a) and Im( 1)“) would give

(3.51) Re())) = Fy(w ,B,k)
and
(3.52) Im( VCX.) "'Fe(wpoesk)“

Unfortunately, due to the complexity of Z(VP ))a), the
above proceedure is extremely difficult; a case where

it can be done is that where Re())a) » Im( 1)‘1), Here,

we obtain
2 3y 2
(3.53) w, = w (1+3/2k° A})
and
_ . 2(x A2
(3.54) ke ="\/z w, —=3 e

where by definition

(3.55) k ’/or. = w, - ike.

This is the Landau dispersion relation, where
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(3.56) AD \/4—KT—'§ s Debye length.

e

The problem has therefore been reduced to finding

the inverse spatial transforms of

- -ik ))_t
(3:57) g (u,,t) = Zaae * spa(uz) +

x

* j; Ak(V)ékoth(uz)dQ

-

and

-1k Vb
(3.58) o (t) = 332 [Za e % 4 fAkw)e-ikVta,)]a

k a «

Returning now to our "current " definition, we
multiply Ek(uz,t) by u,-. Taking the inverse transform

of these results, we get

=i1kz

(3.59) g, (z,u,,t) = g; -/’ uzék(uz,t)e dx

and

(3.60) @(z,t) = 51-,;f ¢, (t) e~1KZ ax,

Due to the complexity of the expansion coefficients
a, and A ( }) and the difficulty in determining the
discrete roots for the general case, further analysis

of this particular problem would be relegated to



computer techniques.
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IV CONCLUSIONS

The properties of a plasma immersed in a constant
external magnetic field may be determined, to a first
order approximation, by the solution of a modified first
moment of a linearized transport equation coupled to the
four Maxwell relations. For the case of plane symmetry,
we can express the plasma phenomena in terms of trans-
verse and longitudinal modes of oscillation, i.e. phe-
nomena due to electron motion perpendicular to or par-
allel with the direction of the outside impressed
magnevic ficld.

It is at this point that the equations become
amenable to normal mode analysis either as a boundary
value or an initial value problem. Here, we were
concerned only with the latter. Considering the
transverse and longitudinal modes separately and
ascribing a so-called ''state vector' to each, we
Fourier transformed the space variable and assumed that
all time quantities varied as e-ﬂcyt° We then found
two sets of functions, one characteristic of the

transverse mode and the other of the longitudinal mode,
with the properties that each set is complete in the
longitudinal velocity variable. We demonstrated a
prescription for determining the expansion coefficients
characteristic of each set. Using these formal

relations we then could express the physical state

vectors (one for the transverse mode and the other for
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the longitudinal mode) of an initial value problem as a linear
combination of the normal mode state vectors comprising the
sets,

The existence of the expansion coefficients for the longitudinal
case was demonstrated by Case [Case, 1959] whereas that for the
transverse mode was here assumed. The justification of the latter
is rather involved for it requires the methods of singular integral
equations in the solutionof an inhomogeneous Hilbert problem. Owur
belief in the existence of such coefficients is strengthened, however,
by Shure's {:Shure, 1962} demonstration of existence of similar

coefficients for the transverse mode boundary value problem,
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APPENDIX A

In this section, we shall indicate how equation
(2.:179) yields the normalization coefficient: for the
continuous case. We begin by considering the evalua-

tion of the integral involving a double singularity,

Io’ where
- 'F A(Y') apy' a
a1 Io:Eff Y (“.)WQ) u,
—o0 (uz- E) (u -‘)"’ k)

The order of integration may not be arbitrarily

changed in the above. It can be shown by using the
Bertrand-Poincare transformation [Muskhelishvili9 1953]
that

o(t,t ) dt o(t,t1)dt
(A.2) at (t-t S(t _—) = =7 ¢(t ,t ) + dt rg—ﬁyrﬁfg)

L

where w(t,tl) must satisfy a Holder condition.
Assuming that our function, ))'F(uz)A(»)'), satisfies
a Holder condition and letting

(4.3)  x3 (7 )

where we obtain

’ ® (] Q []
Y'E(xeE) A(p") aV’'.
(A.4) -1, 'Pfdx[ CTIRIGAEE?)




- 81 -

s
Making use of the Poincare-Bertrand transformation and

returning to the u, variable, we get

F A(W')a
(4.5) I = )PV + )A(J>+fd’/f y' (u JA(Y )du,
(u‘°V +k)(u y+k)

This may be further reduced by the use of partial

fractions. It becomes

® 0 2
4.6 1, = BV a0y er[ I [&,/2_ }\(u)]%(l%)

a2 L0 K°
oA I o yvie B LA =A<-,'">] 5 T
p
where we used the expression
2
w F(u ) :
(A.7) c2=u2=—§1/ o] duzg}\(,/)o
k (uz=q/+ )

Inserting these results into (2.179) and remembering

that

(2.8)  XOHE(/:8) - A

yYields
w2 2
4.9 (V) Y (u,,0) = A(;/)[(;g YRV D) +

Aegx))
F( p’+ -
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Defining
(8.10) (¥ , ¥(u,,0)) = 6(yV= V"N )HAW)

we obtain

( ) Y2 (Ve £) + A%
(4.11) N(V)-—

F(Y

H‘ID
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APPENDIX B

Two necessary integrals are developed in this

section,
2
-Bu
- ue du
(B.1) Il =P _”(E::;TT_
and
) 2
(B.2) I,sP e Pu” 4y
. @

where }) ie a real and continuous variable. Consider

Il; adding and subtracting L) to the numerator gives

-
(B.3) I, =‘\J_n-B-‘ + /Pf_w%#
(Bo4) = +V L

Turning to I, and letting (u=vY) =y yields

2
(B.5) I, = e 8V %6, )

where, by definition,

- ""B(yz"'ey‘/) a
(8.6) (B,))) =P,/:,, — T

Therefore

2 |
(Bo?) %%’ = uaaj e'B(y +2Y‘/) dy !

=00
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where the principal value sign is no longer needed.

Consequently,

2
(B.8) 5%— - '2Bﬁ o BV,

Assuming an infinite series solution of the type

Q

(B.9)  6(By)) = ), a y2mm

=
we readily see that

(B.10) m =1

n
n
(B-1l) a, = -28 qﬁ e

Therefore

(8.12) G(B,V) = -zeﬁ V(s

where, by definition,

_ =2 nVEn
(B.13) o(B,/ ) = :L:o%mm °

2
A simple term by term comparison of ¢(B,)/ ) with eBu
indicates that

2
(B.18) #(B,¥) < e#¥".

When these results are introduced into Il and I29 we

obtain



=85 -

2
#.15) 1, - T§ @-28v206,0) )

2
(B.16) I, = -2HVE§»)eEBV 9(B,Y )e

The function, I,, is quite important in the acoustics
of rarefied gases and in several engineering problems;
it is related to the plasma dispersion function which
is essentially the Hilbert transform of a Gaussian.
Fried and Conte [Fried and Conte, 1961] define this

function as

oo -X2
(B.17) z(1) = —V'l%.[ oy ax

for Im {T} >Q and as the analytic continuation of
this for Im {TS < 0.

It must be noticed that the above evaluation of

| T p? .
i (B.18) I,(B,V) = E[ %u_ewgl
|

is valid only for V) = real value. It would be

incorrect to state that the integral
oo
2
B

=pu
(Bolg) I2(B9 Va) = / %IIT);_T du
=00 [0 4

with ))a = complex quantity is given by

| -8/
} (8.20) -28][%. Voe % a8, V).
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Proof of the above statement follows. Consider the
limiting case of I2( )/a) for Im( )/a) = 0.

bt 2
_au
(B.21) 1i I.(JV/ ) = 1i fe du
) Immiuaseo 2" "a I;m{y&)eo MCEYNLET

where

(B.22) M, = ) & ieo

Therefore, using the fact that

(B.23) lim —xPB—s = m 6(y)

>0 y +p

gives
® 2 2
-p -8V
(B.24) 1lim I,()Y,) =P %u—;)/&:) + ime  ©

Im {Vaﬁ‘”

=00

which proves the above statement. Since the integral
(B.18) is of such importance in plasma physics and
other fields of science some of its mathematical
characteristics will be developed in Appendix D. The
integral I, (B, ))a) with ))a = complex quantity can,
however, be related to the plasma dispersion function
by letting VB u = x; this yields

2
x

(x-

where Z(V'E, Va) is the plasma dispersion function whose
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algebraic form is given by

2 2 4 6
(B026) Z(T) = iﬁ e-T "2T[1‘=’213—+4—%' - %— + ooo]

It will be shown in Appendix E that the discrete root,

v,

o is such that

Im()/a)‘< 0.

Finally, to complete the relationship between the
function ¢(B,Y ) for /= real quantity and the

plasma dispersion function, we must remember that

2
(B.27) (8, /) A)}[ oBX 4x.
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APPENDIX C

Consider the integral

2

(C.1) 1( Va) - f %L

a
N

where V& is a root of the equation

2 * 2
2w -pBu
(C.2) 0 =1+ ;52 B UEJ/- %%1:77;) du.

It is shown in Appendix E that the root to the above
equation cannot be real and that Im(y)a) < 0, We
then assume these charactertics for the present.

Letting

du

(= V)°

(C.3) 4av 5 U = ue

and dropping the integrated term gives

. ]
2

2 e-Bu

T Ya

® 2
-B
(©-4)  1(B11) [ T -2 S e
0 4

Adding and subtracting p/i to the second term,
integrating the results where possible and rearranging

the terms yields

® a2
_Bu
2 d
(C.5) I(By¥) = -ZBV% Vo + (1“25%)[”(‘——”, Al
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Referring now to vne results of Appendix B, we

write

(0-6)  I(B,V) = -28\[F Yy + (1-2BV2NE 2(B V)

where Im( Ua) < 0.
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APPENDIX D

Due to the importance of the plasma dispersion
function and its relation to our integral (B.2), we
shall devote some space here in illustrating a few of

-the mathematical properties that these functions have

in common. From Appendix B, we have

2
-B
(D.1) I(B,V) =P %%%) du

where )/ = real quantity.

2
(D.2)  I(B,V) = ]/g (1-28Y2 95,9 V).

A cursory examination of this integral indicates
that

(D.3) 1im I(Y ) = %
V>0

and

(D.4) 1im I(Y ) = 0.
Y>>

The first result indicates that

B/ 2

(D.5) 1im (2BY%¢ePY ) . 0
J> 0

whereas the second means that

B2

(D.6) 1lim (2BV2¢ePY ™) a1
V—)n
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These results are important when examining the nature
of 'Ak(x) )o The above results can be independently
obtained by applying 1'Hopital's Rule and the fact that

(D.7) %-‘7(') L ea‘/

o 2
to the function ¥(B,/ ) = 2By2¢e’5‘) .

A fairly complete discription can be obtained by
cons,idering‘ its derivative for the range O < % < + @,

3%

Reinembering that %T) (Vo) =e , it may readily be

shown that

2
(D.8) %%— - 23)}[ 1+(1-28V 2) cpe“B’j ] .

We see that

¥
D, 1 o = 0,

The limit as V —> ® 1is somewhat more difficult to
obtain, a complete analysis requires the use of
1'Hopital's rule several times. The following some=-
what intuitive method, however, yields the correct

results. Consider

2
(D.10) %% -ZBV[1+ —‘59;75-2BV2¢9°B‘} ]o
e

‘)2

Remembering that limit of 2B 1/‘2q;e"’B as V — o

is 1, we have
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-d\y ) —@ v 2§eBV2
(D.11) lii.)mwa—y— '\]).-i;n@ 2B V2 = lim

800

Finally, the third zero in the derivative is given by

_ JE , 2
(D.12) 2BV2ge P 1. 3;-%;—92
e o
where
1/2

-B
(D.13) 28 ))(2)¢e ° 51,

Consequently, a typical curve for Y(Bglj) would be

Y Y —
Naturally, Y(B,V) = Y(B,-Lj) and the curve is

symmetric about the Y axis.
Our function
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2
-B 2
(D.14) P f%)du - -23\[‘%-Ve’3’) o(B, /)

corresponds exactly to the real part of the dispersion

function, ReZ()/), for the special case where

)/ = real quantity

leo
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APPENDIX E

In this section, we shall pay some attention to

the derivation of the roots to the dispersion relation

) 2
2 -Buz
2w u_ e
e 14D ‘VE, Z ‘
(Eol) 0 1+ k2 B P j:” zuz - l)a“) d.uzo

The fact that there exists no real roots to this
equation is evident from the following. Equation (E.1l)
is a result of applying the normalization condition to

the particular normal mode solution

| zi F'(u,)
B2 By 02 WYY

where ]/a is real discrete quantity. No principal
value sign is necessary since, in this case,

2
W
(E.3) ;g F'(Y) = 0.

However for a Maxwell-Boltzmann equilibrium distribution,

we have shown that

w2 we B -Bu2
(E.4) ;% F'(uz) = =2 ;g B-v;— u e z

Consequently, if there exists real discrete roots to

the above dispersion relation, these would occur at

(E.5) V,6 =0

(+
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and

(E.6) Y = o.

(0 8

The first condition implies

2
w

(E.7) 0=l+2—1§-B
k

which is impossible since this would fix the value of
k whereas the second would mean that
0 =1,

Clearly, there cannot exist real discrete roots for
‘the case of a Maxwell-Boltzmann equilibrium distribu-
tion. Indeed, it is possible to show by the argument
theorem as Shure demonstrated [Shure, 1962] that the
above dispersion relation can have no solutions for
the case where Im( ¥ ) 20. The only case left is that
where Im()/a) < 0; the remaining portion of this
section will be devoted to the consideration of this
case,

Rewriting the above dispersion relation in

terms of the plasma dispersion function, we obtain

(E.8) o-1+—95\/—['\/— f uﬁrﬁu)]

2

2
=1+ —ZB B‘\/é[’\/%)« vr ), 2(VB Va>]

k
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where Im( )/a) < 0, Extricating roots from this general
solution isg however, quite complicated; we can not

hope to find a general expression such as

(E.9) Vo = f(wpgks,B)o

Such a relation can, however, be found for the limited
case where Re( Va) > Im( 1}“)0 The following is an
outline leading to this relation.

Letting Von = ( ))°==is) where | Voﬁ » lef and

€ >0 we may rewrite the dispersion relation as

2
.=Bu
- -1
(E.10) o-1+——25v [[u(u Vo) E]; du.
+ €

(- )°

Assuming that 1/0 is so0 large that the numerator goes

2

to zero as u—> ))09 we may drop €~ in the denominator.

Approximately, we write

2 2
2 -
(E.11) o=‘1+—;125\’-2 )du=-ie [‘iﬂ-sl du |
k (u=1{,)

Since € is so small, we may also write

2 2 2
2w -Bu =B J
r~ u
(E.12) 0 = 1+—2k2 a"% [P ye ) = A% Ve o]

A comparison indicates that
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- 2 2
~Bu -BY
(E.13) ue = du _ T )/ °
c f S x

Since the meaningful part of the integration is in the

region, )/°>> u, we may say that

2
=2 1 2u u ..
(1) Vd) i _ﬁ%[ L Vo ' %f ' ]

Substituting this into the above integral, integrating,
and retaining the largest term gives

,:33)2
(E«15) € = B u%}’g n e ©°.

The real part of ))a may be found in a similar way.
Consider the approximation equation (E.12); for the
case VB l)o » 1, we may drop the imaginary term and

rewrite this equation as

2
2 d =Bu“) du
w = (e
= b |8 du
(E.16) 0= 1- " "n pf ey o

Integrating this by parts and expanding (u - 1)0)"2 ag

was done for the imaginary case yields

2
-~ ¥ 1 2u u2 -r=Bu.2
(E.17) 1= ]-:22 % 72 j(l+-)): +1J§ + 0.0 )€ du.

Integrating this and retaining the two largest contri-

butions gives
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2
w
E.18 1] = =R . [1 _L]

or letting w, = k Vgg we obtain

o

2
W
(E.19) (1+2 %) =1,

The only meaningful root to the above is

n

(E.20) w )

ISV
lw

o ™ wp(l +

Pw

g

where the first two terms of the binomial expansion
were retained. This root may be put into its more

common form by remembering that

2

m o 2 - 4nne
(Eozl) B = 2KT 9 Wp m °

Inserting the above into the expression for v, gives
- 3.242

(B.22) wy = w (1 + 2X°2p)

where

KT
4mne

(E.23) Ap = 5 , Debye length.

Defining w, = k) = (w,-1ike), yields for the

imaginary part




-1
2
- 2(k
(E.24) ke = -185 W, ——L—ge ( AD)
PGk ap)

where L k ’)o = was used as a first approximation.

w
The above results af*e in full agreement with those
derived by Landau; however, his approach is different.
Finally, it must be stated that these results are
valid whenever k AD < 1l; this condition is a natural
result of the method used to derive the real part of
Woe There it was supposed that the imaginary part of
the dispersion relation was very small or that

B\)§>> 1. Writing w =k ’)o and letting WO:WP gives

1

2 ~
(E.25) Pws = —=—= » 1
P 2k2Ag
or that
(E.26) = » k \
© 4 D.

As an order of magnitude limitation, the statement

k AD<< 1 suffices.



